DOI: 10.1002/ejic.200601027

Reactions of tBu_2AlH and RE(SiMe₃)₂ (R = H, SiMe₃) – Synthesis and X-ray Crystal Structures of $[tBu_2AlP(H)SiMe_3]_2$ and $[tBu_2AlE(SiMe_3)_2]_2$ (E = Sb, Bi)

Madhat Matar, [a] Andreas Kuczkowski, [a] Ulrich Keßler, [a] Stephan Schulz, *[a] and Ulrich Flörke [a]

Keywords: Main group elements / Heterocycles / Solid state structures

Dehydrosilylation reactions between tBu_2AlH and $E(SiMe_3)_3$ yielded the four-membered heterocycles $[tBu_2AlE(SiMe_3)_2]_2$ (E = Sb, 1; Bi, 2), whereas no reaction was observed with $P(SiMe_3)_3$. In contrast, the reaction of tBu_2AlH with $HP(SiMe_3)_2$ also proceeds with elimination of Me_3SiH and subsequent formation of $[tBu_2AlP(H)SiMe_3]_2$ (3). Complexes

1–3 were characterized by multinuclear NMR (1 H, 13 C{ 1 H}, 31 P{ 1 H}) and mass spectroscopy, elemental analysis, and single-crystal X-ray diffraction.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

Heterocyclic group 13/15 compounds of the type [R₂MER'₂]_x have been studied for many years. In particular, amino-, phosphanyl- and arsinoalanes, -gallanes and -indanes $[R_2MER'_2]_x$ (M = Al, Ga, In; E = N, P, As) have been synthesized in large numbers by standard synthetic procedures such as alkane, hydrogen, and salt elimination reactions and structurally characterized.[1] Unfortunately, these reaction types almost completely failed to synthesize analogous group 13 stibides and bismuthides [R₂MER'₂]_x (M = Al, Ga, In; E = Sb, Bi). Therefore, alternative synthetic pathways had to be developed. The dehalosilylation reaction, which was introduced by Wells et al. for the synthesis of arsinogallanes in 1986, [3] was found to be suitable for the preparation of stibinogallanes and -indanes, [4] whereas the corresponding stibinoalanes, [5] as well as bismuthinoalanes^[6] and -gallanes,^[7] were synthesized by the dehydrosilylation reaction. This particular reaction sequence, which was introduced by Nöth et al. for the synthesis of phosphanylboranes [H₂BPR₂]₃,^[8] is generally applicable for the synthesis of the desired group 13/15 heterocycles $[R_2MER'_2]_x$ (M = Al, Ga; E = P, As, Sb, Bi), as the reaction can be performed under kinetically controlled reaction conditions at low reaction temperatures, [9] which were found to be essential for the synthesis of group 13/Bi heterocycles such as [Me₂GaBi(SiMe₃)₂]₃ and [Me₂InBi-(SiMe₃)₂]₃.^[10] Mechanistic studies on the reactions of Et₂PSiMe₃ with HAlCl₂ and H₂AlCl clearly demonstrated that the dehydrosilylation reaction is favored over the dehalosilylation reaction.[11] In addition, the reaction of Me₂AlH with HP(SiMe₃)₂ also proceeds preferably with dehydrosilylation rather than H₂ elimination, even though subsequent transphosphanation reactions resulted in the formation of several Me₂AlP(SiMe₃)₂-containing species such as the trimeric phosphanylalane [(Me₂Al)₃(P(H)-SiMe₃)₂P(SiMe₃)₂], which could be isolated^[12] and structurally characterized.^[13] In remarkable contrast to these findings, *i*Bu₂AlH preferably reacts with HP(SiMe₃)₂ with H₂ elimination and subsequent formation of [*i*Bu₂AlP-(SiMe₃)₂]₂.^[14] An analogous reaction sequence was observed for the reaction of *i*Bu₂AlH with Ph₃SiPH₂, also yielding the H₂ elimination product [*i*Bu₂AlP(H)SiPh₃]₂.^[15] Obviously, the reaction mode is strongly influenced by the organic substituents bound to the Al atom.

Because of our general interest in group 13/15 chemistry of the heavier group 15 elements (Sb, Bi), we investigated reactions of tBu_2AlH with $E(SiMe_3)_3$ (E = P, Sb, Bi) and $HP(SiMe_3)_2$ and report herein on the synthesis and single-crystal X-ray analyses of $[tBu_2AlE(SiMe_3)_2]_2$ (E = Sb, 1; Bi, 2) and $[tBu_2AlP(H)SiMe_3]_2$ (3), respectively.

Results and Discussion

Equimolar amounts of tBu_2AlH and $E(SiMe_3)_3$ (E = Sb, Bi) react at ambient temperature with elimination of Me_3SiH and subsequent formation of $[tBu_2AlE(SiMe_3)_2]_2$ (E = Sb, 1; Bi, 2). In contrast, no reaction was observed with $P(SiMe_3)_3$, even at 180 °C. $^{[16]}$ Complex 2 was formed in only 25% yield because of decomposition reactions with subsequent formation of $Bi_2(SiMe_3)_4$, which has been previously shown to be the typical decomposition product of $[Me_2MBi(SiMe_3)_2]_3$ (M = $Al_3^{[6]}$ $Ga_3^{[7]}$ $In_3^{[10]}$). To the best of our knowledge, 2 represents only the second structurally characterized heterocyclic bismuthinoalane to date [Equation (1)].

 [[]a] Department Chemie, Universität Paderborn,
 Warburger Straße 100, 33098 Paderborn, Germany
 Fax: +49-5251-603423
 E-mail: stephan.schulz@upb.de

2
$$tBu_2AIH + 2 E(SiMe_3)_3 \xrightarrow{-2 Me_3SiH} [tBu_2AIE(SiMe_3)_2]_2$$

 $E = Sb 1, Bi 2$ (1)

Complexes 1 and 2 were characterized in detail by multinuclear NMR spectroscopy. 1 H and 13 C{ 1 H} NMR spectra of both compounds each show two sets of resonances due to the organic substituents (tBu, SiMe₃). Mass spectra of 1 and 2 do not show the molecular ion peaks. The peak with the highest mass observed in both spectra corresponds to the monomeric unit ($M^{+}/2$).

Single crystals of **1** and **2** suitable for X-ray structure determination were obtained from solutions in toluene at –40 °C (Figures 1 and 2).

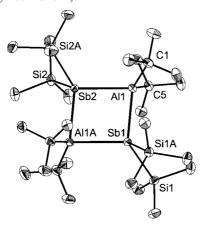


Figure 1. ORTEP plot (50% probability level; H omitted for clarity) showing the solid-state structure and atom-numbering scheme for 1. Selected bond lengths [Å] and angles [°]: Al1–Sb1 2.786(1), Al1–Sb2 2.781(1), Sb1–Si1 2.587(1), Sb1–Si1A 2.587(1), Al1–Cl 2.004(2), Al1–C5 2.005(2); Al1–Sb1–Al1A 94.1(1), Al1–Sb2–Al1A 94.3(1), Sb1–Al1–Sb2 85.8(1), C1–Al1–C5 117.5(1), Si1–Sb1–Si1A2 96.7(1), Si2–Sb2–Si2A2 96.2(1).

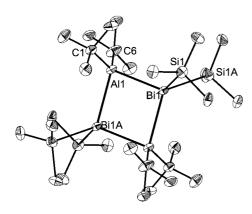


Figure 2. ORTEP plot (50% probability level; H omitted for clarity) showing the solid-state structure and atom-numbering scheme for **2**. Selected bond lengths [Å] and angles [°]: Al1–Bi1 2.840(2), Al1–Bi1A 2.840(2), Bi1–Si1 2.660(2), Bi1–Si1A 2.660(2), Al1–Cl 2.008(7), Al1–C6 1.999(8); Al1–Bi1–Al1A 94.1(1), Al1–Bi2–Al1A 95.9(1), Bi1–Al1–Bi1A 84.1(1), Cl–Al1–C6 118.9(3), Si1–Bi1–Si1A2 95.6(1).

Complexes 1 and 2 crystallize in the monoclinic space group C2/c (no. 15) 1 and C2/m (no. 12) 2 and adopt planar four-membered rings. The ring atoms reside in distorted tet-

rahedral environments, as is typical for this type of compound. The Al–Sb bond length (av. 2.784 Å 1) is elongated compared to that of other heterocyclic stibinoalanes $[R_2AlSb(SiMe_3)_2]_x$ (av. values: R = Me, 2.719;^[5b] Et, 2.726;^[5a] iBu, 2.744 Å^[5a]) and base-stabilized monomeric derivatives dmap-AlR₂Sb(SiMe₃)₂ [R = Me, 2.691(1); Et, 2.680(1) Å],[17] most likely because of increased repulsive interactions between the sterically demanding organic substituents. Analogous trends are observed for the average Al-Bi bond length in 2 [2.840(2) Å], which is also longer than the average Al-Bi bond length observed in [Me₂AlBi(SiMe₃)₂]₃ $(2.774 \text{ Å})^{[6]}$ and dmap-AlR₂Bi(SiMe₃)₂ [R = Me, 2.755(2); Et, 2.750(2) Å],^[18] the only structurally characterized organometallic Al-Bi compounds to date. The endocyclic Al-E-Al bond angles (94.2°, 1; 95.9°, 2) are bigger than the Al-E-Al bond angles (85.8°, 1; 84.1°, 2), as is typical for this type of heterocycle. The presence of bulky tBu substituents leads to elongated Al-C bond lengths (av. 2.005 Å, 1) compared to other four-membered Al-Sb heterocycles $[R_2AlSb(SiMe_3)_2]_2$ [R = Et, 1.971 Å, 117.3(1)°; iBu, 1.983 Å, 121.3(1)°], as was previously reported for heterocyclic phosphanylalanes $[R_2AlP(SiMe_3)_2]_2$ (R = Me,^[19] Et,^[20] iBu^[12]). Surprisingly, the C-Al-C bond angle in 1 [117.5(1)°] is smaller than that observed for [iBu₂AlSb-(SiMe₃)₂]₂ [121.3(1)°] and almost identical to that of [Et₂AlSb(SiMe₃)₂]₂ [117.3(1)°] despite the increased steric demand of the tBu groups. The Al-C bond length (av. 2.004 Å) and C-Al-C bond angle in **2** [118.9(3)°] are comparable to those in 1. The Sb-Si and Bi-Si bond lengths (av. 2.587 Å, 1; 2.660 Å, 2) are within the expected ranges; the average Si-Sb-Si bond angle in 1 (96.5°) is slightly bigger than the Si-Bi-Si bond angle of 2 (95.6°).

To our surprise, no reaction occurred when tBu_2AlH and $P(SiMe_3)_3$ were heated up to $180 \, ^{\circ}C.^{[16]}$ In contrast, iBu_2-AlH was reported to react slowly with $P(SiMe_3)_3$ at ambient temperature with formation of $[iBu_2AlP(SiMe_3)_2]_2.^{[14,21]}$ This finding prompted our interest in the reaction of tBu_2AlH and $HP(SiMe_3)_2$, yielding $[tBu_2AlP(H)SiMe_3]_2$ 3 in high yield. ^{31}P NMR spectroscopic studies gave no sign of any transphosphanation reaction involving species such as PH_3 and Me_3SiPH_2 as was reported for the reaction of Me_2AlH and $HP(SiMe_3)_2^{[12]}$ [Equation (2)].

$$2 t Bu2AlH + 2 HP(SiMe3)2 \xrightarrow{-2 Me3SiH} [t Bu2AlP(H)SiMe3]2 3$$
 (2)

Complex **3** was characterized in detail by multinuclear NMR spectroscopy (¹H, ¹³C{¹H}, ³¹P{¹H}). The NMR spectra clearly proved the presence of a mixture of the *cis* and *trans* isomers of the four-membered ring in solution. The integration of the three resonances of the *t*Bu groups in the ¹H NMR spectrum revealed the formation of a 1:1 mixture of the *trans* (one signal) and *cis* isomer (two signals). The ³¹P spectrum of **3** shows two multiplets of the AA'XX' spin system (AA' parts) and the ³¹P{¹H} spectrum shows two singlets of almost equal intensity at –229.6 and –232.8 ppm, respectively, for the *cis* and the *trans* iso-

mer. The ³¹P{¹H} spectra of the mother liquor and the recrystallized product show the same relative intensities of both isomers (Figure 3).

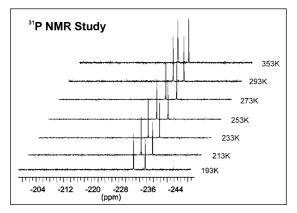


Figure 3. Temperature-dependent $^{31}P\{^{1}H\}$ NMR study of 3 in $[D_{8}]$ toluene.

The formation of cis and trans isomers has been described previously for four-membered M₂P₂ heterocycles of the type $[R_2MP(H)R']_2$ such as $[Et_2InP(H)Si(iPr)_3]_2$, [22] $[Et_2GaP(H)SiMe_2(CMe_2iPr)]_2$, [23] and [tBu₂InP(H)-SiMe₃]₂.^[24] Surprisingly, a temperature-dependent ³¹P{¹H} NMR study in [D₈]toluene of recrystallized 3 clearly revealed that there is no dynamic equilibrium between both isomers in solution in the temperature range from -80 to +80 °C. The relative concentrations of both isomers do not change and no coalescence was observed. A powder X-ray diffraction study proved the crystalline material to be exclusively the trans isomer (Figure 4). According to this result, cocrystallization of the trans and the cis isomer can be excluded.[25]

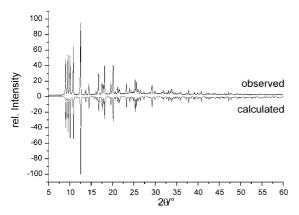


Figure 4. Experimental and calculated powder X-ray diffraction pattern of 3.

The mass spectrum of 3 does not show the molecular ion peak but $M^+/2$ as was observed for 1 and 2. An additional signal at m/z 363 ($[tBuAl_2P_2(SiMe_3)H]^+$) at very high intensity indicates the stability of the central four-membered Al_2P_2 ring under these specific conditions.

Single crystals of 3 suitable for X-ray structure determination were obtained from a solution in n-hexane at -40 °C. Figure 5 shows the solid-state structure of 3.

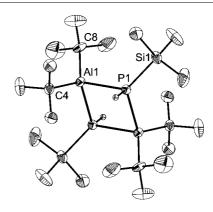


Figure 5. ORTEP plot (50% probability level; H omitted for clarity) showing the solid-state structure and atom-numbering scheme for 3. Selected bond lengths [Å] and angles [°]: All–Pl 2.465(1), All–PlA 2.459(1), Pl–Sil 2.255(1), All–C4 1.998(2), All–C8 1.994(2); All–Pl–AllA 94.4(1), Pl–All–PlA 85.6(1), C4–All–C8 121.0(2), Sil–Pl–All 129.9(1), Sil–Pl–AllA 127.3(1).

Complex 3 crystallizes in the triclinic space group $P\bar{1}$ (no. 2) and adopts a planar four-membered heterocyclic structure. To the best of our knowledge, 3 represents the first structurally characterized dimeric phosphanylalane containing primary phosphido ([RPH]⁻) bridges.^[26] Comparable phosphanylgallanes [R₂GaPHR']₂ were shown to form either planar ($[Cl_2GaP(H)Si(tBu)_3]_2$, [27] $[tBu_2GaP(H)$ tBu₂,^[28] [tBu₂GaP(H)Cp]₂^[29]) or butterfly-type ring structures ($[Me_2GaP(H)Si(tBu)_3]_2^{[27]}$). The formation of a fourmembered ring is caused by the steric demand of the tBu substituents, as can be seen when comparing 3 with sterically less hindered phosphanylalanes [(Me₂Al)₃(P(H)- $SiMe_3)_2P(SiMe_3)_2]^{[13]}$ and $[Me_2AlP(H)Si(iPr)_3]_2,^{[30]}$ which form six-membered rings in the solid state. The Al-P bond length in 3 (av. 2.462 Å) is comparable to those reported for $[Me_2AlP(SiMe_3)_2]_2$ (2.457 Å), $[Et_2AlP(SiMe_3)_2]_2$ (2.458 Å), and [iBu₂AlP(SiMe₃)₂]₂ (2.476 Å). The central ring atoms reside in distorted tetrahedral environments with the SiMe₃ groups and H atoms bound to the P atoms showing a transoid orientation. The endocyclic Al-P-Al bond angle of 94.4(1)° is bigger than the P-Al-P angle of 85.6(1)°, as was expected. Both bond angles significantly deviate from those of $[R_2AlP(SiMe_3)_2]_2$ [Al-P-Al: R = Me, 90.6(1); Et, 90.2(1);iBu, 91.0(1); P-Al-P: R = Me, 89.4(1); Et, 89.8(1); iBu, 89.0(1)°]. The average Al-C bond length as observed for 3 (1.996 Å) is elongated and the C-Al-C bond angle $[121.0(2)^{\circ}]$ is bigger than in $[R_2AlP(SiMe_3)_2]_2$ [R = Me, 1.959 Å, 113.4(2)°; Et, 1.972 Å, 114.2(2)°; *i*Bu, 1.977 Å, 117.1(2)°], in accordance with the higher steric demand of the tBu groups, whereas the P-Si bond lengths [2.255(1) Å] are almost identical.

Experimental Section

General: All manipulations were performed in a glovebox under N_2 or by standard Schlenk techniques. tBu_2AlH , $^{[31]}HP(SiMe_3)_2$, $^{[32]}P(SiMe_3)_3$, $^{[33]}Sb(SiMe_3)_3$, $^{[33]}$ and $Bi(SiMe_3)_3$, $^{[33]}$ were prepared according to literature methods. 1H , $^{13}C\{^1H\}$, and $^{31}P\{^1H\}$ spectra were recorded with a Bruker Avance 500 spectrometer and are ref-

FULL PAPER

erenced to internal C_6D_5H (1H $\delta=7.154$, ^{13}C $\delta=128.0$ ppm) and external H_3PO_4 , respectively. Melting points were measured in sealed capillaries and are not corrected. Mass spectra (EI) were recorded with a Finnigan MAT 8230 spectrometer. Melting points were measured in sealed capillaries and were not corrected. Elemental analyses were performed at the Elementaranalyse Labor of the University of Paderborn. The results obtained for 1 and 2 deviate from the calculated values because of their expressed sensitivity toward air and moisture.

Synthesis of $[tBu_2AlE(SiMe_3)_2]_2$: Equimolar amounts of tBu_2AlH (0.14 g, 1 mmol) and $E(SiMe_3)_3$ (E = Sb, 0.34 g; Bi, 0.43 g) were combined at ambient temperature and stirred until gas evolution had stopped. The resulting solids were dissolved in toluene (10 mL) and stored at -40 °C. Colorless crystals of 1 and 2 were formed within 24 h. Yields are given for isolated compounds after recrystallization.

[tBu₂AlSb(SiMe₃)₂]₂ (1): Yield 0.37 g, 0.45 mmol, 90%. M = 818.68 g/mol; m.p. 220 °C (dec.). Found: C 40.2, H 8.6; C₂₈H₇₂Al₂Sb₂Si₄ requires C 41.1, H 8.9. ¹H NMR (500 MHz, C₆D₅H, 25 °C): $\delta = 0.59$ (18 H, s, Me_3 Si), 1.29 (18 H, s, Me_3 CAl) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₅H, 25 °C): $\delta = 6.0$ [s, Me_3 Si], 31.4 [s, Me_3 CAl] ppm. EI-MS (70 eV, 70 °C): m/z (%) = 534 (5) [Sb₂(SiMe₃)₄]⁺, 498 (5) [M/2 + H]⁺, 408 (55) [M/2]⁺, 351 (75) [M/2 - (tBu)]⁺, 295 (60) [M/2 - 2tBu]⁺, 221 (60) [M/2 - 2tBu - SiMe₃]⁺, 73 (100) [SiMe₃]⁺, 58 (80) [tBuH]⁺, 43 (65) [tBuH - Me]⁺.

[tBu₂AlBi(SiMe₃)₂]₂ (2): Yield 0.13 g, 0.13 mmol, 25%. M = 993.14 g/mol; m.p. 165 °C (dec.). Found: C 32.8, H 6.9; C₂₈H₇₂Al₂. Bi₂Si₄ requires C 33.9, H 7.3. ¹H NMR (500 MHz, C₆D₅H, 25 °C): $\delta = 0.82$ (18 H, s, Me_3 Si), 1.30 (18 H, s, Me_3 CAl) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₅H, 25 °C): $\delta = 7.1$ (s, Me_3 Si), 31.1 (s, Me_3 CAl) ppm. EI-MS (70 eV, 70 °C): m/z (%) = 498 (5) [M/2 + H]⁺, 423 (15) [M/2 – SiMe₃]⁺, 366 (25) [M/2 – SiMe₃ – (tBu)]⁺, 146 (65) [Si₂Me₆]⁺, 73 (100) [SiMe₃]⁺, 58 (45) [tBuH]⁺, 43 (70) [tBuH – Me]⁺.

Synthesis of [tBu₂AlP(H)SiMe₃]₂ (3): tBu₂AlH (1 mmol, 0.14 g) was added to HP(SiMe₃)₂ (1 mmol, 0.17 g) at ambient temperature. Immediately, a gas evolution was observed and after a few minutes the mixture solidified. The colorless solid was dissolved in *n*-hexane (10 mL) and stored at -40 °C. Colorless crystals of 3 were formed within 48 h. The yield is given for the isolated compound after recrystallization. Yield 0.21 g, 0.43 mmol, 86%. M = 492.75 g/mol; m.p. 98-100 °C. Found: C 53.4, H 11.3; C₂₂H₅₆Al₂Si₂P₂ requires C 53.6, H 11.5. ¹H NMR (500 MHz, C_6D_5H , 25 °C): $\delta = 0.26-0.28$ (18 H, Me₃Si), 1.22 (9 H, s, Me₃CAl, cis isomer), 1.23 (18 H, s, Me₃CAl, trans isomer), 1.26 (9 H, s, Me₃CAl, cis isomer) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₅H, 25 °C): $\delta = 3.1$ [dt, ²J(C-P) = 4.2, ${}^{4}J(C-P) = 2.0 \text{ Hz}$, $Me_{3}Si$], 30.9 (s, $Me_{3}CAl$), 31.3 (s, $Me_{3}CAl$), 31.8 (s, Me₃CAl) ppm. ³¹P{¹H} NMR (200 MHz, C₆D₅H, 25 °C): $\delta = -229.6$ [dd, ${}^{1}J(P-H) = 167.6$, ${}^{2}J(P-P) = 67.7$ Hz, cis isomer], -232.8 [dd, ${}^{1}J(P-H) = 171.3$, ${}^{2}J(P-P) = 71.4$ Hz, trans isomer] ppm. EI-MS (70 eV, 70 °C): m/z (%) = 363 (90) $[tBuAl_2P_2(SiMe_3)H]^+$, 246 (50) $[M/2]^+$, 147 (80) $[Si_2Me_6]^+$, 73 (75) $[SiMe_3]^+$, 58 (60) $[tBuH]^+$, 43 (100) $[tBuH - Me]^+$.

X-ray Structure Solution and Refinement: Crystallographic data of 1–3 are summarized in Table 1. Figures 1, 2 and 5 show ORTEP diagrams of the solid-state structures of 1–3. Data were collected with a Bruker SMART APEX CCD diffractometer^[34] using Mo- K_{α} radiation ($\lambda = 0.71073$ Å) at T = 120(2) K, and data reduction and absorption corrections were done with SAINT^[34] and SAD-ABS.^[34] The structures were solved by direct and Fourier methods (SHELXTL),^[34] and refined by full-matrix least-squares on F^2 . All non-hydrogen atoms in 1–3 were refined anisotropically and hydrogen atoms were located from ΔF maps and refined at idealized positions with a riding model (SHELXTL). The Si–C distances of the disordered SiMe₃ group in 2 have been restrained with the SADI command of SHELX.

CCDC-626081 (for 1), -626082 (for 2), and -626083 (for 3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data for [tBu₂AlSb(SiMe₃)₂]₂ (1), [tBu₂AlBi(SiMe₃)₂]₂ (2) and [tBu₂AlP(H)SiMe₃]₂ (3).

	[tBu2AlSb(SiMe3)2]2 (1)	[tBu2AlBi(SiMe3)2]2 (2)	$[tBu_2AlP(H)SiMe_3]_2$ (3)
Molecular formula	C ₂₈ H ₇₂ Al ₂ Sb ₂ Si ₄	C ₂₈ H ₇₂ Al ₂ Bi ₂ Si ₄	C ₂₂ H ₅₆ Al ₂ P ₂ Si ₂
Formula mass	818.68	993.14	492.75
Crystal system	monoclinic	monoclinic	triclinic
Space group	C2/c (no. 15)	C2/m (no. 12)	P1 (no. 2)
a [Å]	19.6350(8)	18.3305(12)	8.4864(9)
b [Å]	13.2645(5)	13.3815(9)	10.4671(11)
c [Å]	18.2399(7)	9.9129(6)	10.7269(11)
a [°]			63.790(2)
β [°]	117.121(1)	117.869(1)	80.170(2)
γ [°]			73.546(2)
$V[\mathring{A}^3]$	4228.2(3)	2149.5(2)	818.7(2)
Z^{-1}	4	2	1
μ [mm ⁻¹]	1.448	8.343	0.267
$D_{\rm calcd.}$ [g/cm ³]	1.286	1.534	0.999
Crystal dimensions [mm]	$0.22 \times 0.20 \times 0.13$	$0.22 \times 0.08 \times 0.07$	$0.41 \times 0.38 \times 0.32$
Measured reflections	18182	9501	7070
Unique reflections	5018	2652	3709
$R_{ m merg}$	0.0199	0.0466	0.0574
No. of parameters refined/restraints	164/0	138/21	131/0
$R_1^{[a]}; w R_2^{[b]}$	0.0207, 0.0524	0.0303, 0.0659	0.0418, 0.1368
Gof ^[c]	1.043	1.040	1.118
Final max, min $\Delta \rho$ [e/Å ³]	0.768, -0.273	1.577, -1.073	0.349, -0.349

[a] $R_1 = \Sigma(||F_o| - |F_c||)/\Sigma|F_o|$ [for $I > 2\sigma(I)$]. [b] $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}$. [c] Goodness of fit = $\{\Sigma[w(|F_o^2| - |F_c^2|)^2]/(N_{obs} - N_{param})\}^{1/2}$.

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG), Fonds der Chemischen Industrie, and the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF).

- a) C.-C. Chang, M. S. Ameerunisha, Coord. Chem. Rev. 1999, 189, 199;
 b) C. J. Carmalt, Coord. Chem. Rev. 2001, 223, 217;
 c) R. L. Wells, Coord. Chem. Rev. 1992, 112, 273;
 d) A. H. Cowley, R. A. Jones, Angew. Chem. Int. Ed. Engl. 1989, 28, 1208.
- [2] [Me₂MSb(tBu)₂]₃ (M = Ga, In) were prepared in rather low yields by salt elimination reaction. (A. H. Cowley, R. A. Jones, C. M. Nunn, D. L. Westmoreland, *Chem. Mater.* 1990, 2, 221) In addition, (Cp*Al)₃Sb₂ was prepared by reaction of [Cp*Al]₄ and [tBuSb]₄. (S. Schulz, T. Schoop, H. W. Roesky, L. Häming, A. Steiner, R. Herbst-Irmer, *Angew. Chem. Int. Ed. Engl.* 1995, 34, 919).
- [3] C. G. Pitt, A. P. Purdy, K. T. Higa, R. L. Wells, *Organometallics* 1986, 5, 1266; for a review article see: R. L. Wells, *Coord. Chem. Rev.* 1992, 112, 273.
- [4] a) A. H. Cowley, R. A. Jones, K. B. Kidd, C. M. Nunn, D. L. Westmoreland, J. Organomet. Chem. 1988, 341, C1; b) A. R. Barron, A. H. Cowley, R. A. Jones, C. M. Nunn, D. L. Westmoreland, Polyhedron 1988, 7, 77; c) R. A. Baldwin, E. E. Foos, R. L. Wells, P. S. White, A. L. Rheingold, G. P. A. Yap, Organometallics 1996, 15, 5035; d) R. L. Wells, E. E. Foos, P. S. White, A. L. Rheingold, L. M. Liable-Sands, Organometallics 1997, 16, 4771; e) S. Schulz, M. Nieger, J. Organomet. Chem. 1998, 570, 275; f) E. E. Foos, R. L. Wells, A. L. Rheingold, J. Cluster Sci. 1999, 10, 121; g) E. E. Foos, R. J. Jouet, R. L. Wells, A. L. Rheingold, L. M. Liable-Sands, J. Organomet. Chem. 1999, 582, 45; h) E. E. Foos, R. J. Jouet, R. L. Wells, P. S. White, J. Organomet. Chem. 2000, 598, 182.
- [5] a) S. Schulz, M. Nieger, Organometallics 1998, 17, 3398; b) S.
 Schulz, M. Nieger, Organometallics 1999, 18, 315; c) S. Schulz,
 A. Kuczkowski, M. Nieger, Organometallics 2000, 19, 699.
- [6] S. Schulz, M. Nieger, Angew. Chem. Int. Ed. 1999, 38, 967.
- [7] F. Thomas, S. Schulz, M. Nieger, Organometallics 2002, 21,
- [8] a) H. Nöth, W. Schrägle, Z. Naturforsch., B: Chem. Sci. 1961,
 16, 473; b) H. Nöth, W. Schrägle, Chem. Ber. 1965, 98, 473; c)
 G. L. Wood, D. Dou, C. K. Narula, E. N. Duesler, R. T. Paine,
 H. Nöth, Chem. Ber. 1990, 123, 1455.
- [9] Reactions of Me₂AlH with P(SiMe₃)₃ and As(SiMe₃)₃ also resulted in the formation of the corresponding heterocycles [Me₂AlP(SiMe₃)₂]₂ and [Me₂AlAs(SiMe₃)₂]₂. See the following and refs. cited therein: F. Thomas, S. Schulz, M. Nieger, Z. Anorg. Allg. Chem. 2002, 628, 235.
- [10] F. Thomas, S. Schulz, M. Nieger, Angew. Chem. Int. Ed. 2003, 42, 5641.
- [11] G. Fritz, R. Emül, Z. Anorg. Allg. Chem. 1975, 416, 19.

- [12] L. K. Krannich, C. L. Watkins, S. J. Schauer, *Organometallics* 1995, 14, 3094.
- [13] A. Schaller, H.-D. Hausen, J. Weidlein, Z. Anorg. Allg. Chem. 2000, 626, 616.
- [14] L. K. Krannich, C. L. Watkins, S. J. Schauer, C. H. Lake, *Organometallics* **1996**, *15*, 3980. The authors also reported on the formation of a compound with the composition *i*Bu₂AlP-(SiMe₃)₂·*i*Bu₂AlP(H)SiMe₃ in about 15% yield, which unfortunately could not be isolated. However, the formation of this compound indicated that Me₃SiH elimination occurs to some extent.
- [15] A. H. Cowley, R. A. Jones, M. A. Mardones, J. L. Atwood, S. G. Bott, Angew. Chem. Int. Ed. Engl. 1990, 29, 1409.
- [16] Above 180 °C only decomposition reactions were observed.
- [17] S. Schulz, M. Nieger, Organometallics 2000, 19, 2640.
- [18] S. Schulz, F. Thomas, A. Kuczkowski, H. Hupfer, M. Nieger, Organometallics 2000, 19, 5758.
- [19] F. Hey-Hawkins, M. F. Lappert, J. L. Atwood, S. G. Bott, J. Chem. Soc., Dalton Trans. 1991, 939.
- [20] S. M. Stuczynski, R. L. Opila, P. Marsh, J. G. Brennan, M. L. Steigerwald, Chem. Mater. 1991, 3, 379.
- [21] The reaction of *i*Bu₂AlH and P(SiMe₃)₃ in refluxing hexane gave [*i*Bu₂AlP(SiMe₃)₂]₂ in high yield within 6 h (ref.^[13]).
- [22] C. v. Hänisch, B. Rolli, Z. Anorg. Allg. Chem. 2002, 628, 2255.
- [23] C. v. Hänisch, B. Rolli, Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 749.
- [24] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, W. E. Buhro, J. Am. Chem. Soc. 1997, 119, 2172.
- [25] Cell parameters (Å [°]) as obtained by powder X-ray diffraction (273.2 K): a = 10.6138(15), b = 10.9145(15), c = 8.5549(13); a = 100.194(9) (=79.806), b = 107.237(7) (=72.763), c = 63.639(8), V = 846.9(3) Å³.
- [26] The formulation of [tBu₂AlP(H)tBu]₂ as a dimer is based on NMR spectroscopy studies.^[27]
- [27] M. Westerhausen, T. Rotter, C. Pfaller, A. N. Kneifel, A. Schulz, *Inorg. Chim. Acta* 2005, 358, 4253.
- [28] a) D. L. Atwood, A. H. Cowley, P. R. Harris, R. A. Jones, S. U. Koschmieder, C. M. Nunn, J. Organomet. Chem. 1993, 449, 61;
 b) K. Kirschbaum, D. M. Giolando, Acta Crystallogr., Sect. C 1994, 50, 1244.
- [29] D. E. Heaton, R. A. Jones, K. B. Kidd, A. H. Cowley, C. M. Nunn, *Polyhedron* 1988, 7, 1901.
- [30] M. Driess, S. Kuntz, C. Monsé, K. Merz, Chem. Eur. J. 2000, 6, 4343.
- [31] W. Uhl, Z. Anorg. Allg. Chem. 1989, 570, 37.
- [32] G. Becker, M. Rössler, W. Uhl, Z. Anorg. Allg. Chem. 1981, 473, 7.
- [33] W. A. Hermann, G. Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry, vol. 3, Phosphorus, Arsenic, Antimony and Bismuth, Thieme, Stuttgart, 1996.
- [34] Bruker, SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03), Bruker AXS Inc., Madison, WI, USA, 2002.

Received: November 1, 2006 Published Online: May 4, 2007